Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Inverted polymer solar cells integrated with small molecular electron collection layer

Identifieur interne : 000197 ( Chine/Analysis ); précédent : 000196; suivant : 000198

Inverted polymer solar cells integrated with small molecular electron collection layer

Auteurs : RBID : Pascal:13-0216867

Descripteurs français

English descriptors

Abstract

An efficient inverted polymer solar cell (PSC) is reported by integrating a small molecular electron collection layer (ECL) between indium tin oxide (ITO) cathode and the photoactive layer of blended poly(3-hexylthiophene) and [6,6]-phenyl C61 butyric acid methyl ester (P3HT:PCBM). The ECL is composed of a cesium carbonate-doped tris(8-hydroxyquinolinato) aluminum (Cs2CO3:Alq3) layer. As determined by photoelectron spectroscopy and electrical measurements, the Cs2CO3 doping induces suitable energy level alignment at the ITO/ Cs2CO3:Alq3/PCBM interface and the increase in bulk conductivity of organic ECL, which are favorable to electron extraction through Cs2CO3:Alq3 to ITO cathode. In addition, optical simulation indicates that the Cs2CO3:Alq3 layer can act as an optical spacer to modulate the region of highest incident light intensity within the photoactive layer, where absorption and charge dissociation are efficient. The inverted PSC with an optimized Cs2CO3:Alq3 ECL exhibits a power conversion efficiency of 4.83%. The method reported here provides a facile approach to achieve high-performance inverted PSCs at low processing temperature.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0216867

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Inverted polymer solar cells integrated with small molecular electron collection layer</title>
<author>
<name sortKey="Shi, Ai Li" uniqKey="Shi A">Ai-Li Shi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University</s1>
<s2>Suzhou 215123</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Suzhou 215123</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Yan Qing" uniqKey="Li Y">Yan-Qing Li</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University</s1>
<s2>Suzhou 215123</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Suzhou 215123</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Xu, Zai Quan" uniqKey="Xu Z">Zai-Quan Xu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University</s1>
<s2>Suzhou 215123</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Suzhou 215123</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sun, Fu Zhou" uniqKey="Sun F">Fu-Zhou Sun</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University</s1>
<s2>Suzhou 215123</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Suzhou 215123</wicri:noRegion>
</affiliation>
</author>
<author>
<name>JIAN LI</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University</s1>
<s2>Suzhou 215123</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Suzhou 215123</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Shi, Xiao Bo" uniqKey="Shi X">Xiao-Bo Shi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University</s1>
<s2>Suzhou 215123</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Suzhou 215123</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wei, Huai Xin" uniqKey="Wei H">Huai-Xin Wei</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University</s1>
<s2>Suzhou 215123</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Suzhou 215123</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lee, Shuit Tong" uniqKey="Lee S">Shuit-Tong Lee</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University</s1>
<s2>Suzhou 215123</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Suzhou 215123</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kera, Satoshi" uniqKey="Kera S">Satoshi Kera</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Graduate School of Advanced Integration Science, Chiba University, 1-33 Yayoi-cho</s1>
<s2>Inage-ku, Chiba 263-8522</s2>
<s3>JPN</s3>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Inage-ku, Chiba 263-8522</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ueno, Nobuo" uniqKey="Ueno N">Nobuo Ueno</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Graduate School of Advanced Integration Science, Chiba University, 1-33 Yayoi-cho</s1>
<s2>Inage-ku, Chiba 263-8522</s2>
<s3>JPN</s3>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Inage-ku, Chiba 263-8522</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tang, Jian Xin" uniqKey="Tang J">Jian-Xin Tang</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University</s1>
<s2>Suzhou 215123</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Suzhou 215123</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0216867</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0216867 INIST</idno>
<idno type="RBID">Pascal:13-0216867</idno>
<idno type="wicri:Area/Main/Corpus">000B73</idno>
<idno type="wicri:Area/Main/Repository">000A09</idno>
<idno type="wicri:Area/Chine/Extraction">000197</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1566-1199</idno>
<title level="j" type="abbreviated">Org. electron. : (Print)</title>
<title level="j" type="main">Organic electronics : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alignment</term>
<term>Aluminium</term>
<term>Aluminium complex</term>
<term>Butyric acid</term>
<term>Cathode</term>
<term>Cesium addition</term>
<term>Cesium carbonate</term>
<term>Conversion rate</term>
<term>Diversity combining</term>
<term>Doped materials</term>
<term>Doping</term>
<term>Electrical measurement</term>
<term>Emitter coupled logic</term>
<term>Energy conversion</term>
<term>Energy level</term>
<term>Ester</term>
<term>Fullerene compounds</term>
<term>High performance</term>
<term>ITO layers</term>
<term>Illumination</term>
<term>Indium oxide</term>
<term>Interface</term>
<term>Low temperature</term>
<term>Luminous intensity</term>
<term>Optimization</term>
<term>Organic solar cells</term>
<term>Photoelectron spectrometry</term>
<term>Photoelectron spectrum</term>
<term>Spacer</term>
<term>Thiophene derivative polymer</term>
<term>Tin addition</term>
<term>n type semiconductor</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Cellule solaire organique</term>
<term>Combinaison diversité</term>
<term>Logique émetteur couplé</term>
<term>Addition étain</term>
<term>Couche ITO</term>
<term>Cathode</term>
<term>Addition césium</term>
<term>Spectrométrie photoélectron</term>
<term>Spectre photoélectron</term>
<term>Mesure électrique</term>
<term>Dopage</term>
<term>Niveau énergie</term>
<term>Alignement</term>
<term>Cale espacement</term>
<term>Eclairement</term>
<term>Intensité lumineuse</term>
<term>Optimisation</term>
<term>Conversion énergie</term>
<term>Taux conversion</term>
<term>Haute performance</term>
<term>Basse température</term>
<term>Oxyde d'indium</term>
<term>Thiophène dérivé polymère</term>
<term>Ester</term>
<term>Acide butyrique</term>
<term>Composé du fullerène</term>
<term>Carbonate de césium</term>
<term>Aluminium</term>
<term>Quinoléin-8-ol</term>
<term>Complexe d'aluminium</term>
<term>Interface</term>
<term>Semiconducteur type n</term>
<term>Matériau dopé</term>
<term>8105T</term>
<term>7960J</term>
<term>ITO</term>
<term>Cs2CO3</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Dopage</term>
<term>Aluminium</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">An efficient inverted polymer solar cell (PSC) is reported by integrating a small molecular electron collection layer (ECL) between indium tin oxide (ITO) cathode and the photoactive layer of blended poly(3-hexylthiophene) and [6,6]-phenyl C61 butyric acid methyl ester (P3HT:PCBM). The ECL is composed of a cesium carbonate-doped tris(8-hydroxyquinolinato) aluminum (Cs
<sub>2</sub>
CO
<sub>3</sub>
:Alq
<sub>3</sub>
) layer. As determined by photoelectron spectroscopy and electrical measurements, the Cs
<sub>2</sub>
CO
<sub>3</sub>
doping induces suitable energy level alignment at the ITO/ Cs
<sub>2</sub>
CO
<sub>3</sub>
:Alq
<sub>3</sub>
/PCBM interface and the increase in bulk conductivity of organic ECL, which are favorable to electron extraction through Cs
<sub>2</sub>
CO
<sub>3</sub>
:Alq
<sub>3</sub>
to ITO cathode. In addition, optical simulation indicates that the Cs
<sub>2</sub>
CO
<sub>3</sub>
:Alq
<sub>3</sub>
layer can act as an optical spacer to modulate the region of highest incident light intensity within the photoactive layer, where absorption and charge dissociation are efficient. The inverted PSC with an optimized Cs
<sub>2</sub>
CO
<sub>3</sub>
:Alq
<sub>3</sub>
ECL exhibits a power conversion efficiency of 4.83%. The method reported here provides a facile approach to achieve high-performance inverted PSCs at low processing temperature.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1566-1199</s0>
</fA01>
<fA03 i2="1">
<s0>Org. electron. : (Print)</s0>
</fA03>
<fA05>
<s2>14</s2>
</fA05>
<fA06>
<s2>7</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Inverted polymer solar cells integrated with small molecular electron collection layer</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>SHI (Ai-Li)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>LI (Yan-Qing)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>XU (Zai-Quan)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>SUN (Fu-Zhou)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>JIAN LI</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>SHI (Xiao-Bo)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>WEI (Huai-Xin)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>LEE (Shuit-Tong)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>KERA (Satoshi)</s1>
</fA11>
<fA11 i1="10" i2="1">
<s1>UENO (Nobuo)</s1>
</fA11>
<fA11 i1="11" i2="1">
<s1>TANG (Jian-Xin)</s1>
</fA11>
<fA14 i1="01">
<s1>Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University</s1>
<s2>Suzhou 215123</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>11 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Graduate School of Advanced Integration Science, Chiba University, 1-33 Yayoi-cho</s1>
<s2>Inage-ku, Chiba 263-8522</s2>
<s3>JPN</s3>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</fA14>
<fA20>
<s1>1844-1851</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>27255</s2>
<s5>354000503035940210</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>42 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0216867</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Organic electronics : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>An efficient inverted polymer solar cell (PSC) is reported by integrating a small molecular electron collection layer (ECL) between indium tin oxide (ITO) cathode and the photoactive layer of blended poly(3-hexylthiophene) and [6,6]-phenyl C61 butyric acid methyl ester (P3HT:PCBM). The ECL is composed of a cesium carbonate-doped tris(8-hydroxyquinolinato) aluminum (Cs
<sub>2</sub>
CO
<sub>3</sub>
:Alq
<sub>3</sub>
) layer. As determined by photoelectron spectroscopy and electrical measurements, the Cs
<sub>2</sub>
CO
<sub>3</sub>
doping induces suitable energy level alignment at the ITO/ Cs
<sub>2</sub>
CO
<sub>3</sub>
:Alq
<sub>3</sub>
/PCBM interface and the increase in bulk conductivity of organic ECL, which are favorable to electron extraction through Cs
<sub>2</sub>
CO
<sub>3</sub>
:Alq
<sub>3</sub>
to ITO cathode. In addition, optical simulation indicates that the Cs
<sub>2</sub>
CO
<sub>3</sub>
:Alq
<sub>3</sub>
layer can act as an optical spacer to modulate the region of highest incident light intensity within the photoactive layer, where absorption and charge dissociation are efficient. The inverted PSC with an optimized Cs
<sub>2</sub>
CO
<sub>3</sub>
:Alq
<sub>3</sub>
ECL exhibits a power conversion efficiency of 4.83%. The method reported here provides a facile approach to achieve high-performance inverted PSCs at low processing temperature.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A05T</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70I60J</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Cellule solaire organique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Organic solar cells</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Combinaison diversité</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Diversity combining</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Combinación diversidad</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Logique émetteur couplé</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Emitter coupled logic</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Lógica emisor acoplada</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Addition étain</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Tin addition</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Adición estaño</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Couche ITO</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>ITO layers</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Cathode</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Cathode</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Cátodo</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Addition césium</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Cesium addition</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Adición cesio</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Spectrométrie photoélectron</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Photoelectron spectrometry</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Espectrometría fotoelectrón</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Spectre photoélectron</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Photoelectron spectrum</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Espectro fotoelectrones</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Mesure électrique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Electrical measurement</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Medida eléctrica</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Dopage</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Doping</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Doping</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Niveau énergie</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Energy level</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Nivel energía</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Alignement</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Alignment</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Alineamiento</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Cale espacement</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Spacer</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Calce espaciamiento</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Eclairement</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Illumination</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Alumbrado</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Intensité lumineuse</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Luminous intensity</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Intensidad luminosa</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Optimisation</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Optimization</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Optimización</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Conversion énergie</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Energy conversion</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Conversión energética</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Taux conversion</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Conversion rate</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Factor conversión</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Haute performance</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>High performance</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Alto rendimiento</s0>
<s5>20</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Basse température</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Low temperature</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Baja temperatura</s0>
<s5>21</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>22</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Thiophène dérivé polymère</s0>
<s2>NK</s2>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Thiophene derivative polymer</s0>
<s2>NK</s2>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Tiofeno derivado polímero</s0>
<s2>NK</s2>
<s5>23</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Ester</s0>
<s5>24</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Ester</s0>
<s5>24</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Ester</s0>
<s5>24</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Acide butyrique</s0>
<s2>NK</s2>
<s5>25</s5>
</fC03>
<fC03 i1="25" i2="X" l="ENG">
<s0>Butyric acid</s0>
<s2>NK</s2>
<s5>25</s5>
</fC03>
<fC03 i1="25" i2="X" l="SPA">
<s0>Butírico ácido</s0>
<s2>NK</s2>
<s5>25</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>Composé du fullerène</s0>
<s5>26</s5>
</fC03>
<fC03 i1="26" i2="3" l="ENG">
<s0>Fullerene compounds</s0>
<s5>26</s5>
</fC03>
<fC03 i1="27" i2="X" l="FRE">
<s0>Carbonate de césium</s0>
<s5>27</s5>
</fC03>
<fC03 i1="27" i2="X" l="ENG">
<s0>Cesium carbonate</s0>
<s5>27</s5>
</fC03>
<fC03 i1="27" i2="X" l="SPA">
<s0>Cesio carbonato</s0>
<s5>27</s5>
</fC03>
<fC03 i1="28" i2="X" l="FRE">
<s0>Aluminium</s0>
<s2>NC</s2>
<s2>FR</s2>
<s2>FX</s2>
<s5>28</s5>
</fC03>
<fC03 i1="28" i2="X" l="ENG">
<s0>Aluminium</s0>
<s2>NC</s2>
<s2>FR</s2>
<s2>FX</s2>
<s5>28</s5>
</fC03>
<fC03 i1="28" i2="X" l="SPA">
<s0>Aluminio</s0>
<s2>NC</s2>
<s2>FR</s2>
<s2>FX</s2>
<s5>28</s5>
</fC03>
<fC03 i1="29" i2="X" l="FRE">
<s0>Quinoléin-8-ol</s0>
<s2>NK</s2>
<s2>FR</s2>
<s2>FF</s2>
<s5>29</s5>
</fC03>
<fC03 i1="30" i2="X" l="FRE">
<s0>Complexe d'aluminium</s0>
<s5>30</s5>
</fC03>
<fC03 i1="30" i2="X" l="ENG">
<s0>Aluminium complex</s0>
<s5>30</s5>
</fC03>
<fC03 i1="30" i2="X" l="SPA">
<s0>Aluminio complejo</s0>
<s5>30</s5>
</fC03>
<fC03 i1="31" i2="X" l="FRE">
<s0>Interface</s0>
<s5>31</s5>
</fC03>
<fC03 i1="31" i2="X" l="ENG">
<s0>Interface</s0>
<s5>31</s5>
</fC03>
<fC03 i1="31" i2="X" l="SPA">
<s0>Interfase</s0>
<s5>31</s5>
</fC03>
<fC03 i1="32" i2="X" l="FRE">
<s0>Semiconducteur type n</s0>
<s5>32</s5>
</fC03>
<fC03 i1="32" i2="X" l="ENG">
<s0>n type semiconductor</s0>
<s5>32</s5>
</fC03>
<fC03 i1="32" i2="X" l="SPA">
<s0>Semiconductor tipo n</s0>
<s5>32</s5>
</fC03>
<fC03 i1="33" i2="3" l="FRE">
<s0>Matériau dopé</s0>
<s5>46</s5>
</fC03>
<fC03 i1="33" i2="3" l="ENG">
<s0>Doped materials</s0>
<s5>46</s5>
</fC03>
<fC03 i1="34" i2="X" l="FRE">
<s0>8105T</s0>
<s4>INC</s4>
<s5>56</s5>
</fC03>
<fC03 i1="35" i2="X" l="FRE">
<s0>7960J</s0>
<s4>INC</s4>
<s5>57</s5>
</fC03>
<fC03 i1="36" i2="X" l="FRE">
<s0>ITO</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="37" i2="X" l="FRE">
<s0>Cs2CO3</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fN21>
<s1>203</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Chine/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000197 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Chine/Analysis/biblio.hfd -nk 000197 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Chine
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:13-0216867
   |texte=   Inverted polymer solar cells integrated with small molecular electron collection layer
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024